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A full-kinetic model based on orbital-motion theory for cylindrical emissive probes
(EPs) is presented. The conservation of the distribution function, the energy and the
angular momentum for cylindrical probes immersed in collisionless and stationary
plasmas is used to write the Vlasov-Poisson system as a single integro-differential
equation. It describes self-consistently the electrostatic potential profile and, conse-
quently, the current-voltage (I-V) probe characteristics. Its numerical solutions are
used to identify different EP operational regimes, including orbital-motion-limited
(OML)/non-OML current collection and monotonic/non-monotonic potential, in the
parametric domain of probe bias and emission level. The most important features of
the potential and density profiles are presented and compared with common approx-
imations in the literature. Conventional methods to measure plasma potential with
EPs are briefly revisited. A direct application of the model is to estimate plasma

parameters by fitting I-V measurements to the theoretical results.
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I. INTRODUCTION

Sheath structure around an electron-emitting surface! is a fundamental problem in plasma
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physics with applications to dusty-grain? and spacecraft® charging, plasma boundary phe-

nomena in fusion devices* and plasma thrusters®, and bare thermionic tethers®. Emissive
probe (EP), a hot cylinder emitting electrons, is of special importance because it is widely
used as a plasma diagnostic tool™™®. This device was invented together with collective Lang-

10,11 " The theoretical basis of the latter is now well-

muir probe (LP) in the early XX century
established!?7'. However, due to the high complexity of emissive sheaths, a self-consistent

kinetic theory for cylindrical EPs is not available yet.

For cylindrical LPs, Mott-Smith and Langmuir presented the orbital-motion-limited
(OML) theory for current collection in 1920s''. For OML collection, the current is lim-
ited by the condition at the probe radius R, instead of that at an absorption boundary
larger than R. Although their approach assumed an arbitrary separation between sheath
and quasi-neutral plasma, lacking self-consistency, the OML theory may still be valid for
small radius-to-Debye length ratios (R/Ap. < 1). In 1957, by considering only the radial
motion of the attracted particles, Allen, Boyd and Reynolds (ABR)' found the radial po-
tential distribution by solving a simple differential equation, with no division into sheath,
presheath, and plasma regions. Although orbital motions were neglected in this theory,
it still provides fairly good approximations for cold ion (7; = 0) collection with spherical
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probes'®. However, the ABR theory can not be applied for cylindrical probes due to the

finite angular momentum, even for 7; ~ 0. This arises from the reason that the potential
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varies slower than 1/r% in the cylindrical case'®. Consequently, a more general theory is

needed for cylindrical geometry.

This general theory for LPs arrived in the late 50s and early 60s, when the Orbital
Motion Theory (OMT) was developed. As long as collisions, plasma drift, particle trapping,
transient effects, and magnetic fields are not significant, the Vlasov equation conserves the
distribution function f,(r,v), transverse energy E,, and angular momentum J, of each
specie . Particle densities N, (r) can be written as functionals of the electrostatic potential
¢(r) and, after substituting N, (r) into Poisson’s equation, it yields an integro-differential
equation that describes self-consistently and rigorously the probe characteristic, i.e., the

current-voltage (I-V) functional relation. Bernstein and Rabinowitz presented in 1959 an
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elegant and self-consistency scheme for monoenergetic attracted particles. In 1964, Lam
completed the theory by using boundary layer techniques in the limit of large probe radius
(R/Ape > 1) at high probe bias (e¢, >> kgT., with T, electron temperature and kp the
Boltzmann constant)'?. In 1966, by solving the integro-differential equation numerically for
a Maxwellian plasma, Laframboise calculated I-V characteristics for a vast range of probe

and plasma parameters, within and beyond the OML regime'4.

To the knowledge of the authors, a general OMT for cylindrical EPs, being valid for arbi-
trary parameter values, has not been developed yet. Important theoretical difficulties arise
for EPs due to the space-charge effects introduced by the emitted electrons. As thermionic
emission is increased, for instance with probe temperature, the electron space charge grows
and suppresses the electric field. At certain emission level, the electric field at the probe
vanishes. Beyond it, a potential dip (or virtual cathode) develops adjacent to the probe and
reflects a portion of emitted electrons back to the probe. The thermionic current is then
said to be space-charge-limited (SCL) and appears to be limited by probe bias other than
probe temperature. The sheath now is constituted by a negative-charge layer next to the

probe and a positive-charge layer extending to the quasi-neutral plasma.

The SCL effect was first studied by Langmuir and his co-workers for single electron
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sheath?® and for planar double sheath?! in the 20s. Available analytical works on emissive

sheaths commonly considered planar geometry??72*. Simulations also focused on planar®>27
or spherical®?® sheaths. Among EP studies, orbital effects were usually ignored?”3? or, if
included, the analyses were limited to certain asymptotic cases. In the 70s, Chang et al.?!
studied the case for very large probe radius (R >> Ap.), assuming monoenergetic ions.
Shortly after, Schuss and Parker®? considered a situation in which not only an absorption
radius does not exist for the ion collection at the probe radius R, but also there is no
absorption radius for the ion collection at any radius larger than R. Numerical solutions of
Poisson’s equation for the virtual cathode in cylindrical geometry were found using an OML
model, however with only emitted electrons considered®?. Recently, by using boundary-
layer techniques and kinetic modelling, a self-consistent asymptotic solution was found for
OML condition at at high probe bias (|e¢,| >> kpT,. )**. Without a rigorous and universal
kinetic description for cylindrical EPs, a wide variety of methods exist - yet commonly with
controversies - to infer plasma potential from experimental data”. Contrary to the successful

application of the LP I-V curves from Laframboise to interpret plasma parameters'®, EP



techniques have not been used to infer other plasma parameters other than plasma potential.

This work presents the OMT for cylindrical EPs. Assuming the same hypothesis of the
OMT for LPs, Section. II shows that the three conservation laws, f,, F,, and J,, can also
transform the Vlasov-Poisson system for cylindrical EPs into a single integro-differential
equation, assuming half-Maxwellian emission and a Maxwellian plasma. Laframboise’s the-
ory for LPs can be recovered from our model by dropping the emission. The integro-
differential equation governs cylindrical-EP characteristics rigorously and is used to cal-
culate numerically the full I-V curves rapidly for different operational regimes, including
positive/negative probe bias, monotonic/non-monotonic sheaths, OML/non-OML collec-
tion, and SCL/non-SCL emission. In Sec. III, the regimes are qualitatively discussed and
identified in the parametric plane of probe bias and emission level. In Sec. IV, quantitative
results on IV curves, operational regimes, potential/density profiles, and floating potentials
are presented and discussed. The main conclusions, limitations of the OMT and future

extensions of the theory are discussed in Sec. V.

II. ORBITAL MOTION THEORY FOR CYLINDRICAL EMITTERS

Let us consider a cylinder with radius R, bias ¢, relative to plasma, temperature 7,
and work-function W, emitting thermionic electrons at the surface with a density Nep,
and immersed at rest in a plasma with unperturbed density N, and particle temperatures

T, (a = e,i for plasma electrons and ions). Plasma species are assumed to be Maxwellian

at infinity, fa(r — 00,0,,0p) = fua = Sl Ma_ ()2 +'U§)], with v, and vy the

kT P [_ OY

radial and azimuthal velocities respectively. Emitted electrons are taken half-Maxwellian as

Jem (R, v, > 0,09) = fau = M’#’”T;”"‘exp [— 2’;&(1}3 + Uj)] Following Richardson-Dushman

(RD) law, electrons are emitted at the probe with the current per unit length being

‘ w
Inp = 2r RART? exp | —— 1
RD ThApl, €Xp ( kBTp) ) (1)
where Ar = 4mem.k%/h® ~ 1.2 x 105Am~2K~2 is a universal constant, h the Planck

constant, and W the work function in eV. The HM distribution and RD law give the

the emission level 3 as

Newp  (27meksT,\*"” ew
= = — 2
g Neo ( h2NZ? ) P keT,) )
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which depends on N, T}, and eW/kgT),. Besides 3, other relevant dimensionless parameters

are

T, edp R

) 5p T gpp kBT ) /)OZ)\D ) (3)

Sy
Il
S=

with A\p. = \/m the plasma electron Debye length and £y the permittivity of
free space.

We here look for self-consistent solutions of the stationary Vlasov-Poisson system without
making assumptions about the order of magnitude of any dimensionless parameter. After

defining the normalized radial coordinate z = r/R and the z-dependent quantities,

ed(r) N; (1) Nepm (1)
= 1,e = 7 y Ttem = ) 4
SO(Z) kBTe ) n/a (Z) Noo n (Z) Ngm,p ( )
Poisson’s equation in cylindrical geometry reads
1 d dp\ .
P (Z dz) = —py (ni = ne — Briem) (5)

Its boundary conditions are ¢(z = 1) = ¢, and p(z = 0o0) — 0. Although we have taken
single-charged ions for simplicity, yet it is a hypothesis that can be easily relaxed in our
model.

As shown below, OMT can be used to write the particle densities N, (1) = ] / fo(r, vy, v9)dv,duy
(v =1, e, em) as functionals of the electrostatic potential ¢(r), i.e., n, in Eq. (5) as func-
tionals of ¢(z). The Vlasov equation conserves the distribution function along particle
orbits (Vlasov characteristics), being the same as where they originate. This origin, being
infinity for plasma species and the probe for emitted electrons, will be denoted by the
subscript 0. Thus, for orbits that can exist at radius r, one has f.;(r,v) = fuei(vo) and
fem(r,v) = fun(vo). Otherwise, f,(r,v) = 0. Whether an orbit can exist at r is governed
by two other invariants.

Due to the cylindrical symmetry of the problem and its stationary character, the angular

momentum,

Ja = MuTvy , (6)
and the transverse energy,
o = ma(v? +v2)/2 + Ua(r) , (7)
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are all conserved. The potential energy U,(r) for each species is defined as

U. = —6@5(7") ) U; = €¢(T) ) Uﬁm(r) =—¢ [¢(T) - ¢P] : (8)

These two constants suffice to characterize particle orbits. They allow to transform the
density integration over v,vp-domain to £J-domain, named D, that aggregates all the orbits
present at r. This domain is categorized into two sub-domains, as D = 2(D; + Ds), with the
factor 2 for considering only positive J hereafter. The sub-domain D; stands for the orbits
arriving at r for the first time (a, b, and ¢ in Fig. 1) and Dy for the orbits reflected back to

r again (c).

LY .

%€ emitted
A electron
b3 .

3 ('L' orbit

FIG. 1. Diagram of particle orbits around a cylindrical emissive probe. The emitted electron orbit

¢ can only exist in the case of potential dip.

For an orbit to be allowed at r, it is necessary (not sufficient) to satisfy simultaneously

the following two requirements:

Eo > Uy(r), (9)
mir*v? = J2 (r, Ey) — J2 > 0 for all B, > U,(r) (10)

where
J2 (1, Ey) = 2mar® [Es — Un(r)] . (11)

That is to say, not only does the energy have to be large enough to overcome the potential-
energy hill, E, > U,, but also the angular momentum has to be small enough, J2 < J2 .
The sufficient condition for an orbit to arrive at r is to satisfy the previous condition along

the trajectory at every r’ prior to r, yielding the sub-domain D; as
Dy ={(En Jo): Eoa > UXr), Jo < I3 (1 En)} s (12)
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where two auxiliary functions were defined,

Ua*r(r) = maX{Ua(r')} ) ‘];r(r? Eoz) = min{Jar(r'7 EO!)} )

R<r <rfora=em, r<r <oofora=ice.

The sub-domain Dy can be written as Dy = Dy — Dy, with D, including the orbits that end

at the probe for plasma species and at infinity for emitted electrons (a and b in Fig. 1):
Dy ={(Ea,Jo): Eq > UL Jo < JX(Ea)} (13)
Ul =max{U,(r'): R <71 < oo},
JHE,) = min{J.(r',E,) : R<7r' < oo} .

After defining j2 = J2/(2moR*kpT,) , 72.(2,€0) = J2,.(1, Eo)/(2ma R2kpT,), ta.(2) =
Uar(1)/(k5T,), and €, = E/(kgT,), the density integration becomes

() 11 / / exp (—€4) dey djy

ne(z) =

“ “ . J D=2(2D1—Dy) 27T V j(%z(z7 EO!) - j2
00

Juk,(2) Q0 jaz(z7 Ea)
(o] _ .
— H, / —exp( ) arcsin —*—— DA de,, ,
. u(’; > ]O&Z(Z’ Ea)
Hi,e =1 ) Hem =2. (14)

The temperature ratios, &; and d,, enter here as j2,(2, €4) = 2%[€n — Uaz(2)], where u,(2) =
©/0i. ez (2) = —p, and Uep,(2) = — (0 — ¢,) /0, Apparently, the density at z does not only
depend on the local potential at z, but also on the values elsewhere.

The substitution of Eq. (14) into Eq. (5) yields a single integro-differential equation for
¢(z). Once ¢(z) is computed, other macroscopic quantities can be calculated, such as density
profiles from Eq. (14). The currents, contributed by the plasma electrons/ions arriving at
the probe and the emitted electrons that reach infinity, are determined by the sub-domain

2D,;. After being normalized with the electron thermal random current per unit length

Iy, = 2rReNy+/ kg1, /2mm,, the currents then read

2G, [ .
o = % . Jo(€q) exp (—€q) déq (15)

Gi:_\/ 5i/ui’ Ge= 17 Gemz_zﬁ\/é_pa




which is defined positive for collected electron current. Note that the mass ratio p; = m;/me.
appears naturally in current calculations but not in the Vlasov-Poisson system.

If the potential is monotonic, some classical probe results can be retrieved from Eqgs. (14)
and (15) without details of ¢(z). For both emitted and attracted species, at the condition of
satisfying both j’(€n) = jaz(1, €4) and u}, = 0, their currents (absolute magnitude) achieve
the maxima. Once there is no potential dip, emitted electrons from a negatively-biased
probe (¢, < 0) always meet this condition. As all the electrons reach infinity successfully,
this maximum emitted current is the RD current, i.,, = —igrp = —20 \/5_p. For attracted
species, ions for ¢, < 0 and electrons for ¢, > 0, this maximum current is the OML current.
At the OML condition, the current is limited by the barrier 5. (1, €,) at the probe other than
any barrier outside the probe, due to j%_ (z,€4) > j%.(1,€6,). The electron-OML (e-OML)
current is then recovered from Eq. (15) as i, = ioarr(p) = 21/ 0p/m + exp(—wpp)erfe(\ /@),
while the ion-OML (i-OML) current is 4; = —+/8;/pi X iomrn(—¢p/di). Regarding densities
at the probe, one finds from Eq. (14) a minimum for emitted clectrons, ne,,(1) = 1, and the
well-known OML result for attracted species, n.(1) = 1/2 [n;(1) = 1/2] for ¢, > 0 [p, < 0]

as a maximum.

IIT. QUALITATIVE DISCUSSIONS

Before showing quantitative results, we will first anticipate typical operational regimes
and explain the reasons underneath. For a cylindrical probe immersed in a plasma with
temperature ratio 7;/7, and biased at ¢, the existence of a maximum probe radius R,
for OML collection is well-known, above which the current collection will not be OML. An
asymptotic analysis without emission (I/rp = 0) has found this R,,,, for different 7;/7, and
e¢p/kpT.*. As shown by Figs. 6 and 7 in Ref. [15], for an arbitrary 7;/7, ratio, a minimum
radius R* exists as Ry, varies with e¢,/kgl,. For ¢, > 0, if R > R*, an OML/non-
OML transition is followed by a non-OML/OML transition as ¢, increases. Otherwise, for
R < R*, the electron collection is OML for all ¢, > 0. If electrons and ions have identical
temperature (1; = 1.), the radius R* is the same for both electron collection with ¢, > 0
and ion collection with ¢, < 0. Likewise, the values of |¢,| at the transitions, if there are,
are also the same for both ¢, > 0 and ¢, < 0. This is because the mass ratio ; does not

enter the Poisson-Vlasov system. Thus, for a probe with R and |¢,|, once T; = T, the |¢(r)|
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profile will be the same, regardless of the sign of ¢,. If T; # T., the R* and the |¢,| values

at the transitions would be different for negative and positive probe.

b (c) @?
1 @ vt ==
O\’
@ ton &
@/@7;@ " :
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7 @ ; 72 Ton-OML
7 o 0 — 1
@ < //EO/// ‘j’ RZ/TZ
@, d0Jdr], 0 ‘
©

FIG. 2. Panel (a) shows the EP operational regimes: 1) e-OML; 2) e-non-OML; 3) e-OML; 4)
non monotonic potential at positive probe bias; 5) non-monotonic potential at negative probe bias;
6) i-OML; 7) i-non-OML; 8) i-OML. Radial potential distribution is qualitatively drawn in two

different ways in (b) and (c), with the numbers indicating the correspondent operational regime.

Figure 2a shows the operational regimes for a probe radius that allow all four OML
transitions. Theses regimes are enumerated from one to eight, with explanations in the
caption. These numbers will be used later in this article as OP-n (OPerational regime - n)
for simplicity. For Igp = 0, it presents the case without emission as discussed above. For
¢p > 0, because nearly all emitted electrons are reflected back at the immediate vicinity
of the probe, negligible emitted-electron space charge renders the two e-non-OML/e-OML
transition boundaries varying little with /zp. For ¢, < 0, as shown in Fig. 6 from Ref. [34],
thermionic emission increases the R threshold and enlarges the parameter range for OML
validity. Consequently, as Irp increases, the i-non-OML region (OP-7) shrinks. There is one
moment that the R threshold becomes equal to the actual probe radius. Further increase in
Igp results in always OML collection. For this reason, the two bottom transition boundaries
meet at certain Irp, creating a closed and reduced i-non-OML region.

The qualitative potential profiles are shown in a r-¢ plane as in Fig. 2b and in a R?/r?-
¢/ ¢, plane as in Fig. 2c. When the potential is monotonic (dashed curves), how the bar-
rier for attracted-particle collection, j*. (z,¢€,), varies with z can be directly observed from
Fig. 2¢' . For instance, for electron collection with ¢, > 0, as electrons move from infinity

to the probe with decreasing z, a decreasing 2% suffices to have j2 (z,e) = 2%(e. + )
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also decrease. So, if the ordinate-to-abscissa profile ratio in Fig. 2¢, 2%/, decreases all
the way to the probe, whether an electron orbit can arrive at any z is determined by the
local potential there only because of j¥,(z,€) = Jje.(2,€.). This situation, where there is
no absorption radius for current collection at any z, was considered in®? as mentioned in
Sec. L. If the 22p/ ¢, ratio does not monotonically decrease towards the probe, the current
collection at z can be limited by a barrier ji,(z,€e.) = je.(2%, €), i.e., by an absorption ra-
dius z* > z. For OML collection, j*,(1,€.) = je.(1,€.) requires that the z%p/y, ratio has
its global minimum at R, thus the potential profile in Fig. 2¢ lying above or osculating the
diagonal. If this potential profile osculates with the diagonal, this just-OML situation has
been considered in** to find the R,,.,. In the non-OML regime, this potential profile crosses
the diagonal. Therefore, the collected current, being limited by a barrier away from the

probe (or an absorption radius z* > 1), will be less than the OML current.

Now let us look at the parametric plot Fig. 2(a) again, with an emission level Irp such
that the probe passes all operational regimes as ¢, varies. For ¢, << 0, the potential is
monotonic [bottom dashed curve in panel (b)]. The probe collects OML ion current [OP-§]
as the potential profile lies above the diagonal in panel (c). Increasing ¢, leads to i-non-
OML [OP-7] regime that is followed by another transition [OP-7/6] to i-OML regime [OP-6].
As ¢, increases, the emitted electrons are less accelerated outwards, thus resulting in more
negative space charge. How this increased negative space charge affects the potential profile
can be directly observed from Poisson’s equation. Because the right-hand side of Eq. (5)
becomes consequently more positive, the curvature of the potential distribution becomes
more negative. For a negative probe bias, this suppresses the inward-pointing electric field
near the probe. Then, at certain ¢,, the electric field at the probe vanishes, as d¢/dr|, =0
[bottom solid curve in (a)]. Above this boundary, a potential dip builds up [OP-5]. In this
non-monotonic regime, the emitted current is SCL, below RD current, and the ¢/¢,-R*/r?
profile in (c¢) exceeds the square. This potential dip does persist even for some positive ¢,
[OP-4]. Further increase of ¢,, after escaping the shadowed region in (a), yields again a
monotonic potential [top dashed curve in (b)]. Two OML transitions [OP-3/2 and OP-2/1]

for electron collection then occur for ¢, > 0.
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IV. QUANTITATIVE DISCUSSIONS

General quantitative results and the determination of operational regimes require solving
the integro-differential equation. Given 3, d;, d,, ¢p, and po, Eqs. 5 and 14 are solved with
a numerical scheme similar to that used in Ref. [16] for LP. The spatial coordinate z is
truncated up to a maximum radius z,,.,. In such a finite interval, we introduce a non-
uniform mesh and a vector ¢ that encompasses ¢(z) at all mesh points. We then apply a
Newton-Raphson method to solve the nonlinear algebraic equations F'(¢) = ¢ — @oue = 0,
with ¢, computed as follows. With an initial guess for ¢, the numerical scheme first
computes particle densities at the grid points, by carrying out the integrals in Eq. (14) using
a simple Simpson rule. Secondly, using a finite-element formulation, vector ¢, is found by

solving Poisson’s equation Eq. (5) with the boundary conditions for cylindrical probes as®

90|z:1 = ¥p (16)

(17)

The most costly part of the algorithm, i.c. the computation of the Jacobian of F', is carried

out in our code by several processors in parallel.

This numerical algorithm was used to compute the I-V characteristics for an EP with
R~ 3.6mm and W = 2.5eV, at several 7}, immersed in an oxygen plasma with 7; = 7T, =
0.25eV, and N, ~ 1.07 x 102 m~3. The exact solutions were then found, for dimensionless
parameters 0; = 1, pg = 1, p; = 29164.1, and f = 3.54 x 104 (51,3)3/2 exp(—10/0,), for a
range of probe bias (=800 < ¢, < 800), and for the cases of no emission and 9, = 0.3,
0.31, 0.32, 0.33, 0.34, which leads to different emission level as =0, 0.19, 0.60, 1.72, 4.63,
11.81, or Igrp/Iy, = 0, 0.21, 0.66, 1.94, 5.32, 13.77. This set of parameters was selected
according to two criteria. In first place, they correspond to typical plasma parameters in
space environment (Low-Earth Orbit), where the collisionless hypothesis of the OMT may
apply. In second place, under these parameter ranges, the EP operational regimes presents

a parametric diagram as shown in Fig. 2, with two OML /non-OML transitions.
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FIG. 3. I-V curves for no emission and 7,,/T, = 0.3, 0.31, 0.32, 0.33, with circles and squares for

monotonic/non-monotonic and OML/non-OML transitions respectively.

A. I-V Characteristics

The I-V curves for different probe temperatures (except for 6, = 0.34) are shown in
Fig. 3. The probe biases at which the transitions of operational regimes occur are indicated
by different markers. Each curve has two square markers and two circle markers, correspond-
ing to the OML/non-OML [OP-2/3, OP-6/7] and the monotonic/non-monotonic [OP-3/4,
OP-5/6] transition, respectively. The OP-1/2 and OP-7/8 transitions occur at very high
\¢p, thus not shown in Fig. 3. For a certain probe temperature, if the probe is biased at
any potential that lies outside the two circles, the resultant potential profile is monotonic.

Between the circle and its adjacent square, the collected current is OML.

For high enough positive probe bias, almost all emitted electrons are reflected back at the
immediate vicinity of the probe, thus producing negligible space-charge effects. Therefore,
all I-V curves coincide as a collecting LP. However, the exact point where they depart from
the LP curve is not clear and it depends on the emission level (see Fig. 3 inset). This inhibits
the separation-point method to be a reliable diagnostic technique, which is congruent with
present knowledge about this method”. For low enough negative probe bias, all electrons
are successfully emitted, with the total current being I = I.,, = —Igrp, limited by the probe

temperature.

Between the circles in Fig. 3, the potential is not monotonic (dashed region in Fig. 2).
The self-consistent description of this relevant parametric region is one of the novelties of
this work. Due to the retarding electric field that repels back the emitted electrons and

yields Iep < Igp. the emitted electron current reduces rapidly as ¢, increases, i.e., the
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total collected (electron) current I increases rapidly. As also shown in Fig. 3, the slope
di/ dg, steepens with emission and the floating potential ¢, the probe bias that results
in zero current at the probe (I = 0), can occur within this non-monotonic regime. In our
calculations (shown later), it was observed that potential profiles with potential dips could
happen even for ¢y > 0, as the top solid curve in Fig. 2b. Such a result was also observed

in particle-in-cell (PIC) simulations for emitting spheres?.

Irp/Iin

FIG. 4. Parametric plane for monotonic/non-monotonic (solid-circle) and OML/non-OML (dot-

square) boundaries and floating potentials (dash-cross).

The boundaries of the different operational regimes in Fig. 3 are presented in Fig. 4 as
a function of the normalized probe potential and emission level (¢, versus Ipp/1y;). This
plot is the quantitative counterpart of Fig. 2, except that the results are shown in two
panels to ease the visualization. As anticipated in Fig. 2a, the OML/non-OML boundaries
(squares) for ¢, > 0 are independent of emission while, for ¢, < 0, emission broadens the ¢,
range of OML ion collection. Regarding the monotonic/non-monotonic boundary (circles),
it decreases with emission for ¢, < 0 whereas tends to saturate for ¢, > 0. The floating
potential ¢ is also shown in Fig. 4 and it can be clearly observed that the probe can float

in the non-monotonic regime.

B. Potential and Density Profiles

Potential and density profiles at different regimes are now presented for the emission level
associated to 0, = 0.31. For positive probe bias with monotonic potential, results are not
shown because they are out of interest here. Also, due to ¢; = 1, at high enough |p,|, the

radial potential distribution |p(z)| would be the approximately same for both negative and
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positive probe bias. To compare with the case without emission, some of the potential and
density profiles without emission are selected to be illustrated by the dash-dot curves in the
figures of this section. These dash-dot curves will not be shown in the legends but only

explained in the caption.

1. Momnotonic potential with ¢, <0

Potential profiles, ¢/¢, versus R?/r? are shown quantitatively in logarithmic scale
in Fig. 5, to present the profile clearly for both z — oo and z = 1. In the qualita-
tive plot Fig. 2(b), this profile was presented in linear scale, where the variation of the
ordinate-to-abscissa profile ratio indicates that of 2%¢/y,. Slightly different in logarithmic
scale, this variation is indicated by the vertical difference from the profile to the diagonal:
log(2%¢/p,) = log(¢/¢p) —log(1/2?%). The condition for OML collection is still to have this

profile above the diagonal.

107 102 107 10°
R?/r?
FIG. 5. Potential profiles (¢/¢, versus R?/r? in logarithm scale) for T,,/T, = 0.31, 8 = 0.60,
T,/T. = 1. R/Ap = 1, and e¢p/kpTs = —200 (OP-7), —37 (OP-6/7), —10 (OP-6), and —2 (OP-
6*). The curves are labeled with the operational-regime (OP) numbers or the transition boundary,

e.g., OP-6/7 (see Fig. 2). The dash-dot curve is shown for e¢,/kpT. = —2 without emission.

For ¢, = —200 (OP-7), as ions move inwards from infinity, the vertical difference from the
profile to the diagonal first decreases and 2%¢/ ), thus also decreases. At certain radius, say
20, 220/ ¢y meets its local minimum. Further inwards, 22/, first increases then decreases

until the probe. Because the profile lies below the diagonal at zo, the value of 22/, is
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always larger than the local minimum found at z,. Therefore, for ion collection at any radius
between zy and the probe, an absorption boundary outside that radius always exists. Due
to the absorption boundary, the current collected by the probe is limited by barriers away
from the probe, i.e., 55 (1, ¢) < ji-(1, €), thus non-OML.

At the probe bias ¢, ~ —37 (OP-6/7), the profile osculates the diagonal and the ion
collection is just-OML, i.e., ji(1,¢) = jiz(1,€) and j;»(1,0) = j;2(20,0). Further increase
of ¢, results in OML collection as shown for ¢, = —10 (OP-6) and ¢, = —2 (OP-6%).
For ¢, = —2, the probe operates in a special case inside the OML regime. Since 2%/,
decreases all the way until the probe, there is no absorption boundary for ion collection at
any z, i.e., j5, = ji, for all z.

For comparison, solutions were also calculated for the case of no emission at these ¢,
values. However, the difference is only distinguishable for ¢, = —2, as shown by the dash-
dot curve. It can be seen that the negative space charge from emitted electrons pushes the
potential profile to the left away from the diagonal. This actually explains why emission
broadens the parameter range for OML validity*.

For the density of repelled plasma electrons, due to j¥,(z,¢.) = Jjeu(2,¢6) = 2zy/€c + @,
Jilee) = Jez(1,€0) = VVee ¥ @p, ul(2) = uez(2) = —¢, and u = uq(1) = —¢,, it is strictly
given by Eq. (14) as

ne(z) =exp(p) — / p(c) arcsin Vet de, . (18)
J T Z\/€c +
For |p,| > 1, the well-known Boltzmann law is obtained as
ne(z) = exp(ep) (19)

because the second term in the right-hand side of Eq. (18) is negligible. This approximation
also worsens near the probe, with the error becoming err = exp(y,)/2 at the probe, which
is confirmed by the numerical results shown in Fig. 6a.

As the potential is monotonic, the emitted electrons are all the way accelerated towards
the infinity. Consequently, looking at the density integration in a form of [ fdw, since f
is conserved and the integration range is reduced, their density would decrease with z, as
shown in Fig. 6(b) where n,,, decreases from one at the probe to be zero quickly as moving

outwards. This density integration Eq. (14) can be estimated, at the region not so close to
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FIG. 6. Density profiles for 7;,/T. = 0.31, f = 0.60, T;/1. = 1, R/Ap = 1, and e, /kpT. = —200
(OP-7), =37 (OP-6/7), —10 (OP-6), and —2 (OP-6*). The net density profiles without emission

are shown by the dash-dot curves for eg,/kpT. = —2.

the probe

‘Eem5p

% oxp(—e, (o —p)
Nem (2) = / XD (= Cem) arcsin Y de,,
0 ™ €emOp
z (—) +1
Y~ ¥p

~9 /OO exp(_eem) eemép dfem :
0 zT Y= ¥p
1 )
== (20)
2\ (e — @)

where the conditions j* . (z, €em) = 75, (€em) = Jemz(1, €em) = /€em and u?, . (z) = ul,, =

Uem»(1) = 0 were used. Alternatively, this expression can also be obtained from fluid de-

scription considering all electrons emitted with zero velocity thus moving radially away from
the probe. Since the azimuthal velocity decreases due to the conserved angular momentum
and the radial velocity increases due to the conserved energy, a radial movement thus ap-
proximates well the emitted electrons away from the probe, as seen from orbits a and b in

Fig. 1. This approximation of course breaks down near the probe, with an infinite value
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at the probe. Also, it is less accurate as |¢,/0,| decreases. Numerical results presented
in Fig. 6b show good agreement with this approximation except very near the probe. For
instance, evaluated at z = 2, this approximation deviates from the numerical result about
0.02 for ¢, = —2, with a difference being much less than 0.01 for the other three ¢, values.
These results verified the validity of using Eq. (20) to approximate emitted-electron densities

in the literature®-3234,

The plasma ion density is more complicated here because of the orbit motion. As shown
in Fig. 6(a), for cases OP-6, OP-6*, and OP-6/7, under OML condition, the ion densities
at the probe are found to be 1/2 as predicted. For OP-7 under non-OML condition, the
resultant density at the probe is about 0.499, being very close to half. A monotonic behavior
in ion density is only observed for the case OP-6*. Under this special condition, due to

7:;(2 67?) 71z Z, 51 = Zy/€ 90/ 2 77 61 712 1 61) = V& _Sop/éi) and u;‘z('z) - UT - 07

the ion density is given by Eq. (14) as

ni(z):1_/omm o VG 9/

arcsin V—————=de; , (21)

T z\/ € — @/

which would decrease all the way to the probe because of a monotonically decreasing
zm However, in all the other three cases shown, the ion density does not ex-
hibit a monotonic profile. This emphasizes, not only, the necessity of modeling the ion
densities correctly considering orbital motions, but also the necessity of a numerical scheme

to carry out complicated calculations for this universal theoretical model.

The net charge at the probe, at OML condition, can be explicitly written out as n;(1) —
ne(l) — Bnem(l) = 1/2 — exp(yp,)/2 — B. Thus for f = 0.6, a negative-space-charge region
will definitely appear next to the probe. As shown in Fig. 6(c), a double sheath is thus
formed and a radius with zero net charge separates two oppositely-charged regions. As ¢,
increases, space-charge effects increase too and the zero-net-charge radius moves away from
the probe. To compare with no emission, the net density for ¢, = —2 without emission are
shown by the dash-dot curves. It seems that after some distance away from the probe, the
with-emission and without-emission curves coincide with each other, as the effects of the

emitted electrons are shielded out hereafter.
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FIG. 7. Potential profiles for 7),/T, = 0.31, 8 = 0.60, T;/1. = 1, R/Ap = 1, and e¢,/kpT. = —0.3
(OP-5/6), —0.05 (OP-5), 0.1 (OP-4). The dash-dot curves are shown for profiles under same probe

bias, but without emission. In panel (b), no-emission case is only presented for e¢,/kgT, = —0.3.
2. Non-monotonic potential, ¢, <0

With ¢, increasing, the electric field was found to vanish at ¢, = —0.3 [OP-5/6 in Fig. 7].
The potential profile in ¢/¢,-R?/r? plane is tangential to the ¢/¢, = 1 line at 7 = R. Further
increase of ¢, results in a retarding electric field for emitted electrons and a potential dip
starts to build up. The potential distribution is no longer monotonic [OP-5 in Fig. 7(a)] and
the ¢/¢,-R?/r? profile exceeds the square [OP-5 in Fig. 7(b)]. This non-monotonic potential

does not occur if there is no emission, as shown by the dash-dot curves.

When the potential is no longer monotonic, the density integration in Eq. (14) becomes
even more complicated and only numerical methods can shed light on the insight of the
space-charge structure and their influences on the potential distribution. As emitted elec-
trons are repelled back by the potential dip, this in turn increases the electron-space-charge
near the probe. Consequently, the density ratio Ngn,/Nemp becomes large than one near
the probe [OP-5 in Fig. 8(b)]. Plasma ions are attracted until the potential minimum and
repelled between the minimum and the probe, vice versa for plasma electrons. The disparity
between their densities for monotonic potential, as observed in Fig. 6(a), is no longer present

[Fig. 8(a)]. This suggests that a pure electron sheath, at least between the potential mini-
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FIG. 8. Deunsity profiles for T,,/T. = 0.31, 8 = 0.60, T;/1. = 1, R/Ap = 1, and e¢,/kpT. = —0.3
(OP-5/6). —0.05 (OP-5), 0.1 (OD-4).

mum and the probe, can be a good approximation as used in3!. As the probe bias increases,
more negative space charge accumulated in the region next to the probe, which pushes the
zero-net-charge radius much further away from the probe [see inset in Fig. 8(c)].

The effects of these negative space charges can be observed in Fig. 7 by comparing the
non-monotonic potential profiles with the dash-dot curves with no emission. In panel (a),
if there is no emission, a pure positive-charge sheath results in a positive curvature. With
emission, due to the negative net space charge next to the probe, the curvature of the
potential becomes negative there. But the potential profile joins the quasi-neutral plasma
with a positive curvature due to the positive net charge away from the probe. Again, in
panel (b), it can be found that emission pushes the profile away from the diagonal, thus

helping the OML collection of ions.

3. Non-monotonic potential with ¢, >0

If the probe is positively biased and there is no emission, the potential distribution is

monotonic as shown by the dash-dot curves in Fig. 7 for ¢, = 0.1. This positive-potential
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sheath attracts electrons and repels ions, leading to negative net space charge everywhere
and a resultant negative curvature in potential distribution.

If there is emission and the positive ¢, is not large enough to repel enough emitted
electrons back to the probe, then an interesting potential profile is developed. To recover
the quasineutrality in plasma, a potential minimum ¢,, has to build up so that the net
potential drop ¢, — ¢, > ¢, is sufficiently large to repel emitted electrons back to the
probe. This potential minimum not only does build up a higher potential energy hill for
electrons to climb up but also attracts ions to assure a consistent sheath structure. As shown
in Fig. 7 for ¢, = 0.1, the non-monotonic potential does persist for this positive probe bias.
And, instead of being a pure negative-electron sheath, it is again a double sheath with
a negative-charge region next to the probe and a positive-charge region extending to the

quasineutral plasma [see Fig. 8.

C. Floating Potential

4 —
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» T,/T. (a)
10 : -
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FIG. 9. Normalized floating potential ¢ and the RD-thermal current ratio Irp /Iy, for a thermionic
material with W = 2.5eV at different temperature d,. The intersections of two dash-point lines and
two dashed lines represent the vanished-electric-field condition and the plasma-potential condition

respectively.

The most common method to obtain the plasma potential using EPs is the floating-
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potential technique. To discuss this technique, our numerical scheme was modified to include
the floating-probe condition, i.e. the probe bias was considered as an additional unknown
and we added the equation I = 0. Thus the floating potential ¢ ; = e¢;/kgT, for different 9,
can be directly calculated, which is shown in Fig. 9(a) for d, = 0.28 to 0.36, i.e., the current
ratio Irp /Iy, =~ 0.02 to 79.13 [see Fig. 9(b)] for a thermionic material with W = 2.5¢V.

In Ref. [22], Hobbs and Wesson calculated the floating potential of a planar wall at large
emission to be ¢y ~ —1. However, this is not necessarily applicable for EPs. The OMT
results from our calculations show that the probe can float at ¢; > 0, in agreement with
simulations for planar geometry®’. Also, similar to that obtained from PIC simulations for
spheres®®, the saturation of floating potential is not clearly observed as in Fig. 9(a). As
explained below, this discrepancy can result from two reasons.

First of all, the planar-sheath assumption can fail for cylindrical EP when the sheath
thickness is much larger than the probe radius. As shown by the potential profiles in
Fig. 10(c), the quasineutrality is recovered even further than a radius that is ten times as
the probe radius. As a result, cylindrical geometry is necessary to be properly modelled and

studied, as one of the goals of this work.
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FIG. 10. At the floating potential found for an cylindrical emitter with W = 2.5eV at different
temperatures: (a) and (b), the minimum potential and its location; (c) potential profile for 6, =

0.31, 0.315, 0.32.
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Secondly, the vanished electric field at the probe surface, dy/dz|,—; = 0, which was
imposed to imply the saturation®, is not a valid assumption for large emission. This as-
sumption would be reasonable if the space charge effect is not strong, so that the potential
dip is close to the probe, r,, — R < R, and with a value close to that of the probe bias,
¢m ~ p. As marked by the intersection of the two dash-point lines in Fig. 9(a), the emitter
will start to float with a non-monotonic potential for §, > 0.311 [see Fig.10(c)]. As emission
increases, the potential minimum can locate at a radius that is comparable with R [see
Fig. 10(a)]. Although not shown here, the potential difference between the minimum and
the probe, |¢, — ¢pl, is also found to increase with emission, as expected to repel more
emitted electrons back to the probe. To compare this difference with the probe bias, the
|(¢m — p)/ eyl ratio is plotted in Fig. 10(b), which can be as large as ten (at least). As
a result, the potential dip is clearly not negligible and a rigorous theory to investigate this
non-monotonic profile is necessary, as the intention of this work.

As shown by the intersection of the two dashed lines in Fig. 9(a), for 6, < 0.316, the probe
floats at a negative bias. Accordingly, in Fig. 10(b), the |(¢m — ¢p)/ ¢yl ratio increases with
¢p. At some emission level for 0.316 < 9, < 0.317, the probe would float at zero bias, with
|(¢m — ¢p)/¢p| thus being infinitely large. Further increase in emission gradually reduces
the [(wm — ¢p)/ep| ratio to one.

Although there is no clear floating-potential saturation, Fig. 9(a) is similar to the ex-
periment curve (Fig. 4 in Ref. [29]). Increasing the emission from no emission, the floating
potential first rises rapidly. A sharp decrease of this slope occurs after the probe floats in
the non-monotonic regime. Our calculations shows that OMT predicts this transition of
operational regime at ¢y =~ —0.31. This indicates that, if we estimate the plasma potential
by looking for the knee in Fig. 9(a), the plasma potential is underestimated with an error

about —0.317, under the condition considered in this work.

V. CONCLUSIONS

This work presented the Orbital Motion Theory (OMT) for cylindrical emissive probes
(EPs). Conservation laws have been used to find the particle densities as functionals of the
electrostatic potential and then write the Poisson equation as a single integro-differential

equation. It unifies in a compact framework for both Langmuir and emissive probes and
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predict rigorously and self-consistently the EP characteristics for arbitrary parameter val-
ues. For given plasma parameters, probe radius, and probe temperature, the implemented
numerical methods typically needs just few seconds or less to solve the integro-differential
equation. Such a short time permits to create a broad database for I-V characteristics and
floating potential ¢, parametrized by 9;, ,, po, and 3. As successfully applied nowadays
for LPs', plasma parameters, in addition to plasma potential, could possibly be found
by an appropriate fitting of experimental EP measurements to this numerically generated
database. This, in addition to the organization of the operation regimes of EPs in the probe
bias-emission level plane, is the major application of the model. The theory can also be
used as a benchmark case to validate more complex codes that would relax some of the
hypotheses of the OMT.

The theory relies on a set of hypotheses that, although widespread in theoretical works
on probe theory, can possibly bring up difficulties in the interpretation of experimental -V
curves. One of them, the Maxwellian plasma assumption faraway from the probe could be
ecasily relaxed. Other distribution functions that would depend on just the energy could be
incorporated to the theory by changing the functions inside the integrals of Eq. (14) accord-
ingly. Removing other assumptions is more problematic because they inevitably leads to
the breaking of a conservation law. For instance, collisions, flowing plasmas, non-stationary
trapping, and probe end effects preclude the conservation of the distribution function, the
angular momentum, the energy, and the axial velocity v,, respectively. The quantitative im-
pact on the collected current of these effects requires computationally demanding algorithms.

Studies on trapped-particle effects using a direct Vlasov code®® are in progress.

However, the results from OMT can be used to test a posteriori, whether these assump-
tions are reasonable or not. For instance, the collisionless hypothesis can be examined by
comparing the overall mean free path for electrons, with the sheath radius that can be found
from the radial potential and density profiles calculated by the OMT. Similarly, the mag-
netic effects can be negligible if the electron thermal gyroradius is larger than both R and
Ape'®. The 2-dimensional-probe hypothesis is valid if the probe length is larger than the
sheath radius. These criteria are useful only for qualitative estimations and may help to
make a correct use of the theory. Nevertheless, the hypotheses of the OMT normally holds
in collisionless space plasmas and low pressure laboratory plasmas, which are practical and

interesting matters of study.
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