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With a thin coating of low-work-function material, thermionic emission in the cathodic segment of bare
tethers might be much greater than orbital-motion-limited (OML) ion collection current. The space charge
of the emitted electrons decreases the electric field that accelerates them outwards, or even reverses it for
high enough emission, producing a potential valley. In this work, at the conditions of high bias and relatively
low emission that make the potential monotonic, an asymptotic analysis is carried out, extending the OML
ion-collection analysis to investigate the probe response due to electrons emitted by the negatively-biased
cylindrical probe. At given emission, the space charge effect from emitted electrons increases with decreasing
magnitude of negative probe bias. Although emitted electrons present negligible space charge far away from
the probe, their effect can not be neglected in the global analysis for the sheath structure and two thin layers
in between sheath and the quasineutral region. The space-charge-limited (SCL) condition is located. It is
found that thermionic emission increases the range of probe radius for OML validity and is greatly more

effective than ion collection for cathodic contact of tethers.

I.  INTRODUCTION

Electrodynamic tethers are conductive wires allowing
flow of electric current between the ends. Arising from
the relative motion between plasma and tether in the
presence of a planetary magnetic field, a current is in-
duced to flow inside the tether and the magnetic field ex-
erts a force on this current. The tether system exchanges
momentum with a planetary magnetosphere and offers
the opportunity for in-orbit “propellantless” propulsion
around planets with a magnetic field and an ionosphere.
Bare (uninsulated) tethers eliminated the need for an
electron collector at the anodic end'™3. Possibly using
bare tethers with no recourse to a plasma contactor at
the cathodic end carries the bare-tether concept to its
full completion. However, actual ion collection along a
cathodic segment is a poor replacement for a hollow cath-
ode. Thermionic emission from materials with low work
function (W) may be a good replacement.

A low work function material, C12A7 : e~ , was devel-
oped and studied at the University of Tokyo by the Prof.
H. Hosono’s group. In vacuum, C12A7 : e~ electride was
found to have a high potential for cold-cathode electron
emission. The field-emission characteristics give an ex-
tremely low W value, ca. 0.6eV.* However, this electride
surface easily reacts with Oy and/or HoO molecules in
the atmosphere, which strongly suggests that an insulat-
ing or semiconducting layer inevitably develops on the
electric surface. It is thus difficult to prepare a pure in-
trinsic surface to know an intrinsic work function value®.
In a later study, a value for W was found to be some-
what higher, ca. 2.4eV, although it was still very low®.
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Recent study in Colorado State University gave a value
of 0.76eV.” In tether applications, we can expect a low
work function due to low density of air molecules in space.
Considering the lowest value found 0.6eV, it can emit in-
tense current (10A/m?) at temperature about 300K, well
below values (1200K — 1300K ) required by state-of-art
electron emitting materials, say, LaB6 and CeB6 (2.7¢V).
Another feature of interest of C12A7 : e~ electride is its
high thermal stability compared to state-of-art materi-
als. Coating a tether with C12A7: ¢~ would allow ef-
ficient thermionic emission, and so cathodic contact, at
reasonable working temperatures®?.

Thermionic emission is different from hollow cathode
cmission in important respects concerning a tether sys-
tem:

e Only electrons rather than plasma are emitted

e Cylindrical rather than spherical geometry is in-
volved, which allows for collected ion current to
follow an explicit law

e A relatively definite physical law for emission cur-
rent is involved, which is not the case for a hollow
cathode, for which broadly different regimes may
exist, giving rise to quite different schemes/analyses

e Thermionic emission allows the current to be emit-
ted over a long segment of tether under a range of
voltage-bias values, other than being emitted only
at tether end as with hollow cathodes

e Use of laboratory test results in designing HC for
generic use in space is tricky.

In the case of no emission, current collection and
sheath structure around a spherical Langmuir probe
have been studied in the literature, using orbital-motion



theory for mono-energetic attracted species'®™'2, while

the cylindrical case was investigated for a Maxwellian
distribution'3~'6. The impact of relativistic effects using
similar methods has been analyzed for a possible Jupiter
mission with electrodynamic bare tethers!”'8. The ef-
fects of emission were first investigated by Langmuir for
a planar sheath problem, not fully self-consistent but a
good approximation for strong double layers'®. Fluid
models have then been often used in the literature to ana-
lyze planar?%—22, cylindrical®?® or spherical?* sheath struc-
tures. Following orbital-motion theory, Chang and Bi-
enkowski discussed the electron emission effects in front
of spherical and cylindrical probes, considering their ki-
netics and the attracted species as mono-energetic®.

This study, following closely the methods in Ref. 14,
extends the orbital-motion-limited (OML) ion-collection
analysis to investigate the probe response due to elec-
trons emitted by the negatively-biased cylindrical probe.
Sections II and III formulate and model the problem of
thermionic emission in the bare-tether application. In
Sec. IV we compute the maximum probe radius-to-Debye
length ratio Ryuaq./Ap for the OML regime to hold, and
also locate the space-charge-limited (SCL) condition, for
which the electric field vanishes at the probe, as result
from the space charge arising from emitted electrons. Re-
sults are discussed in Sec. V.

Il. BARE TETHER WITH THERMIONIC EMISSION

A bare tether collects (electron collection) and emits
(ion collection or electron emission) current, along the
anodic segment AB (®, > 0) and the cathodic segment
BC (¢, < 0) respectively (Fig. 1). The current flowing
along the tether vanishes at both ends. The small cross-
sectional dimension and the kilometers-long length of the
tether allow each point on the cathodic segment to emit
current as if it were part of a cylindrical probe uniformly
polarized at the local tether bias ®, < 0, under two-
dimensional probe conditions that are also applied to the
anodic-segment analysis.

In an unmagnetized plasma at rest, Poisson’s equation
governing the clectrostatic potential
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presents axial symmetry with boundary conditions ® =
$,atr =R, & = 0asr — oo. This is to be sup-
plemented by equations for number densities of ambient
plasma ions NN; and electrons N, and emitted electrons
Nem,.

As in the case of no emission and a collisionless plasma,
under high bias assumption, ions arrive at the negatively
biased probe as electrons arriving at the positively bi-
ased probe in Ref. 14; thus, N; and N, can be calculated
by the same kinetic analysis of the particle trajectories.
The Vlasov equation conserves the distribution function
of plasma ions along their orbits, being an undisturbed
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FIG. 1. Scheme of tether-to-plasma potential ®,, tether po-
tential Vi, plasma potential V},; and current I along a floating
bare tether, operating in drag mode. [, is the motional
electric field, and v, is tether velocity relative to ambient
plasma.

Maxwellian distribution at infinity. Due to the high neg-
ative bias, the repelled plasma electron density is approx-
imated by the simple Boltzmann law,
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where N is the electron and ion particle density at in-
finity. Asymptotic analysis of Poisson’s equation had
been carried out from infinity to the probe, crossing re-
gions with different behaviors, at the particular condition
R = Ryar and beyond R > Ry,q., and high bias'®19.
Rynaq is the largest radius for the OML regime to hold,

the current being maximum as'4,
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where R and L are probe radius and length respec-
tively. Plotting the potential profile ®(r)/®, against
R?/r? (Fig. 2, as Fig. 2 in Ref. 14), the curve lies entirely
above the diagonal in case of OML regime (R < R4z,
I, = Liomr), otherwise the non-OML regime (R > Rpaz,
I; < Liowmr) applies'™ 16,

In the presence of emission, emitted electrons result in
negative space charge, which decreases the electric field
that accelerates them outwards, or even reverses it, decel-
erating electrons near the emitting probe. In the case of a
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FIG. 2. Schematics of potential profile ®/®, versus R?/r? for
given emission, R = Ry,q4, and different bias values.
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FIG. 3. Typical potential distributions of a negatively biased
probe in the presence of electron emission.

monotonic potential as curve ¢ in Fig. 3, all electrons are
accelerated outwards without meeting any barrier, corre-
sponding to the emission at any local point on segment
CB* (Fig. 1). Considering the cathodic segment coated
with a material having work function W, the emitted
current I.,, at this segment is as high as the maximum
current that can possibly be emitted by the probe Iy,
given by the Richardson-Dushman (RDS) equation,

Loy = 27RLC x T2 exp <_%) ’
p

o 12

C = 477%;]” = 1.2017 x 10°A/m?K 2, (4)
as function of W and probe temperature 7}, being inde-
pendent of bias. As |®,| decreases from tether end C,
negative space charge increases its effect, and at some
point B*, the electric field vanishes at the probe (curve
b in Fig. 3), which is the onset of current being SCL.
In Fig. 2, curve b is horizontal at the probe surface
R%/r? = 1. Under further decrease of |®,| from B* to
zero-bias-point B, a potential valley develops in front of
the tether (curve a in Fig. 3). The resultant local min-
imum ®,, repels electrons not energetic enough back to
the probe, the current being Iey, < Iemp. In Fig. 2, curve
a would then actually exceed the full square frame.

In this work, we concentrate on the no-valley, mono-
tonic potential case, corresponding to the segment B*C
in Fig. 1. Under assumptions of high bias and relatively
low emission, emitted electrons are accelerated across the
sheath, presenting a small amount of space charge in the
quasineutral region far away from the probe. Outside
but close to the sheath, the behavior of the potential
profile would be similar to that of non-emitting OML
ion collection, with modifications arising from the space
charge of emitted electrons, in particular on the two tran-
sitional layers that match the quasineutral and sheath re-
gions. For simplicity, we consider throughout R = R4z
cases, where potential profile curves in Fig. 2 are tan-
gent to the diagonal at some radius r in the quasineutral
region. Counsidering equal plasma electron-ion tempera-
ture T, = T; = T, we look for the general parametric
dependence of R,,4. and locate the probe bias where the
current starts to be SCL (curve b in Figs. 2 and 3).

I1ll. MODELLING

In absence of collisions, particles describe free orbits in
the axially symmetric potential field. The condition for
a particle to reach the probe can then be derived from
simple mechanical conservation laws. In a central force
field where cylindrical symmetry prevails, two constants
of motion, in addition to the axial velocity, characterize
the particle orbit, being transverse energy E and angular
momentum J.

For ions, E and J are

E =
2 2

+e®(r), J=myrvg, (5)
with E positive because @, = 0 but J covering both
positive and negative values. For an ion with energy
FE to possibly exist at r, its J has to satisfy the cutoff

boundary'?,

J? = JA(E) = —mir*v? <0,
J2(E) = 2mg*(E — e®) . (6)

Actually, for an ion with energy F to arrive at r from
infinity, its angular momentum must satisfy the cutoff
boundary everywhere beyond r, which is called the ab-
sorption boundary,

J?2 < J2E) =min{J%(E) : v > 71} . (7)

At radius r, for incoming ions with energy F, the momen-
tum range is J? < J*2(E). Among these ions, those with
J? < J2(E) arrive and disappear at the probe, leaving
the rest reflected back to r. Thus the outgoing ions at
r have the momentum range as J52(F) < J? < J*2(E).
After integration of the undisturbed Maxwellian distri-
bution function over the energy domain F > 0 and the
corresponding J domain for both incoming and outgoing
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FIG. 4. Richardson-Dushman current density and emitted
particle density versus probe temperature for different work
function of the emitting material.

ions, the ion density at r becomes'*
Ni(r) /(>C exp(—E/ET)
Ne )y T
J(E JL(E
X {2 X arcsin ﬁ — arcsin Jf((E)) dE, (8)

where J5(E) = J,(E) in the case of R < Ryyqq, and
J.(E) > 0 is chosen for simplicity of presentation.

Electrons are emitted at the probe with a half-
Maxwellian velocity distribution?®26,
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Nemp can thus be associated with I, as

_ Temp/2mRL . (10)

Nemp e\/2kT,/mme
The emitted current density and particle density versus
probe temperature for different work function are shown
in Fig. 4. The Vlasov equation conserves the distribu-
tion function along electron orbits. Since we consider
the case of monotonic potential, vy decreases as angular
momentum

Je = mervg (11)

keeps constant while moving outwards. Radial velocity
thus increases, as energy

E. =mev?/2 +mevE/2 —eAp, AP =3 -, (12)

keeps constant too, vy decreases, and ® increases. As a
result, there is no potential barrier and all electrons emit-
ted at the probe can reach infinity and are thus present

at any r. For electrons with energy E., the integration
domain of J, is thus

0<J?<J%(E.) =2m.R*E, , (13)

where we defined J2. = 2m.r?(E, + eA®). The velocity
distribution integration becomes

New(r) _, /00 exp(—E. /kT,)
Nemp 0 WkTp
R’E,

X arcsin m

dE. . (14)

Taylor expansion of arcsiny/a?z/(x + 1) around & — 0
is arcsin \/a?z/(z + 1) = a (v/z + O[z]*/?). Under con-

dition of eA® /KT, > 1, we have

R?’E,
r2(E, + eAD)

(o] )} e

The emitted electron density becomes

arcsin

New(r) R kT,
T

Nemp me(® — ®,)

(16)
which corresponds to radial motion away from the
probe. This approximation has an error of the order
of [kT},/eA®]?/2 breaking down near the probe surface
where the error becomes infinite. However, the condi-
tions of high bias and low probe temperature (low energy
of emitted electrons) confine the failure of this approxi-
mation to the vicinity of the probe.

We introduce normalized quantities as

fDZ;Z V—]\J[;Zp, H—sz,
z = % , U(2) = —62)1(1:) 0, (17)
me() = D ne) = J2
= RO g =Rt (1)

Then Poisson’s equation becomes

1 d dw

5 7 ] = Ny — Ne — em 20

f%zdz(zdz> Ny —Ne — VN (20)
(1) =",>0, ¥(0)—0, (21)
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FIC. 5. Straight lines of the z-family lines j2(c). A high bias
assumption implies W, > € for the values ¢ = O(1) of interest
in the integrations. As a result, the z = 1 line has a steep
slope in this schematic plot.

where densities are

ni(z) Z/OOCM

™

HGN arcsin VT €
[2 X arcsin 70 i de, (22)
ne(z) =exp(—V) , (23)
ncm(z) = = (24)

2\/m0(T, — )’

and the high bias assumption j2_, (¢) ~ ¥, has been used
in Eq. (22). Note that j,(e) > 0 is chosen for simplicity
of presentation. The absorption boundary j*?(¢) can be
illustrated by considering the z-family of straight lines
j2(e) as in Fig. 5, the slopes being 1/z? and x-intercepts
being z2W¥. The change of z2¥ follows the ordinate-to-
abscissa profile ratio in Fig. 2. The system (20)-(24) must
be solved for given values of all the parameters v, 6, and
U,. Note that the £p value is assumed to be Rpae/AD,
which must be determined as part of the solution.

IV. SCL CONDITION AND MAXIMUM RADIUS FOR
OML VALIDITY

A. z>2

As ions moving inwards from infinity, 2°¥ decreases
and the z-line keeps moving to the left for z decreasing
for all positive energies (Fig.5). This no barrier condition
j2(€) = j. () holds until zp, where 22W starts to increase.
If R = Rpaz, 20 lies on the diagonal in Fig. 2, giving
280y = U,. For z > z, the ion density in Eq. (22)
becomes

ni(z) =1-— / exp(=e) arcsin _;Ij—pde . (25)
0 7T Jz (6)

And, due to ¥ <« ¥, in this region, the emitted electron
density in Eq. (24) can be approximated as

1
'Tlem(Z) ~ W . (26)
p

Thus the potential for any z > z; is given by solving the
quasineutrality equation

o8} —
1-— / M arcsin _;I}—p de
0 T ]z (6)
—exp(—T) — — 2 _—0. (27)
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We can thus determine zy and ¥, by conditions

Yo
1+ exp (Vo) erfe (\/\IIO) = 2exp(—Vyg) + \I/_p 5

(28)
Uy =V,/22 . (29)

Because Eq. (25) is valid as long as R < R4, the
potential profile for z > 2y calculated from Eq. (27) is
also valid for R < Ry,q,, being function of v, § and ¥,
ouly, independent of R. This indicates that Eq. (25) does
not result in d (22¥) /dz = 0 at 2o, which is the accurate
definition of zy. Therefore, the position of zy can not arise
from this approximated quasineutrality solution directly.
In this study, we impose the condition R = R,,,; and
280 = U, acquiring zy and ¥ by Egs. (28) and (29)
before the global sheath solution is found. Then looking
for the Ry,q, value that provides a consistent solution
does require a jump of d (ZZ\II) / dz at zg. However, using
locally the full Poisson’s equation Eq. (20) around z¢ and
Egs. (22), (23) and (26) for particle densities can round
the profile at zp, with no effect beyond its immediate
neighbourhood ™.

B. zi1<z<z2

From zg inwards, with the quasineutral condition still
holding, the no barrier condition does fail as 2?W¥ starts
to increase. Quasineutrality itself is found to break down
at some point z; where dW/dz diverges. The knowledge
of ¥(z) itself is required to determine the envelope of the
z-lines in € — j plane, the dashed curve in Fig. 5, and
thus to determine j¥(e). We approximate this envelope
by a hypel bola that is tangent to the zg line at ¢ = 0 and
j2 = 22®q, and limited by the z; line as the asymptote
for e — ool?,

(2801 — 23 Wo)?

-2 ) o
]env(e) - jzl (6) Z%\IJ1 _ Z(%\IIO + (Zg o Z%)E .

(30)

Use of Eq. (30), however, requires values for z; and ¥,
which are still unknown. Near z;, we have ji(e) =



Jenw(€), and thus the ion density becomes

i = [0
arcsin Jenv(€) — arcsin \/\ITP €
X [2 X ) jz(e)l de . (31)

Use of Eq. (31) for quasineutrality at z; provides a
first relation for z; and Wq. If we write the quasineutral-
ity equation as f(z, V) = 0, the implicit function theorem
gives df/d¥ = 0f /0¥ 4+ 0f/0z- dz/d¥ = 0. Another
relation thus arises from using the equivalence of the di-
vergent condition dz/d¥ =0 at z;, rewritten as

on(z)
ov

_ One(z)
ov

B ONem(2)
ov

=0, (32
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where One,, (2)/0¥|,, actually vanishes. Thus z; and ¥4
can be found from equations

-
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v
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Jeno(€) ¥y
X 2 + - o dF
l \/Jﬁl (€) = Jenu(€) \/Jﬁl (€) = (e+Tp)
—exp(—¥,)=0. (34)

With the approximated envelope, we can determine
€enw(2), where the envelope osculates with the z line at.
As the envelope shares the same slope with z line at €gpy,

djgm,‘(e)/ddee,w - djzz(e)/de Comy = 22 gives
Een'u(z) =
R e
\/ 5 — (30— W)
: (3)
22 — 22 ‘

The relation j. (€env) = Jenw(€env) then directly gives the
potential,

je2nv(6€7w)

W(z) = Lne g

— €env - (36)
Note that, once the potential profile is determined
throughout, the resultant overall particle density n; —
Ne — VNem can be used to evaluate the error of Eq. (30)
as jeny(€) approximation. For ion density at any radius
between zp and z1, we have in Eq. (22),

€ < €env(2)
€ > €env(2) - (37)

j:(ﬁ) = jenv (E), for
= jZ(€)7 fOI'

The maximum error evaluated for values § = 4, v = 0,
20, 50, 70, and 100 is found of the order of 1% or less,
validating that approximation.

C. Two transitional layers

From z; inwards, because of the sharp increase in U,
quasineutrality breaks down. A very thin transitional
layer, in the vicinity of z1, takes the solution to a radius
z9 a bit closer to the probe, where U, rather than dW¥/dz,
is found to actually diverge as ¥ — Wy o< (2 — 29)~2. The
structure of the this layer is considered in Appendix A.
The location of z5 is found in Eq. (A6) as

71\
/\H &het ) ,

(38)
where A and p are defined in Egs. (A2) and (A3). As
different from the determination of zy, z1, ¥y and Wy,
the value of 29, which depends on £p appearing in S,
can not be calculated until the entire sheath structure is
solved. If £p is somehow poorly determined, the same
applies to zs.

A second thin transitional layer around zo is needed to
match the solution inside the sheath. At this layer, be-
ing thin and faraway from the probe under high bias as-
sumption, space curvature can be ignored in 2D Laplace
operator of Poisson’s equation, equivalently z ~ z5. In
this layer however, the complete expression of the RHS
of Poisson’s equation needs to be retained as:

22221(1—/352)752%3-42»/35<

2 e8] o
;1 \Ijz :/ —eXp( 2 2 X arcsin —78””(F)
& dz 0 T 23(e+ )
N
— arcsin (ei\Il) de
v , (39)
294/TOW,,

where the ambient electrons density has been neglected.
To match the first transitional layer, we have the behav-
ior of the potential from z5 outwards as

12
U = + 7, . 40
A2 (21 — 2188 — 2)? ! (40)
From z5 inwards, to match the sheath at the top of this
layer, the sharp increase of W results in j2(€) >> jeno(€)
and z3¥ > ¢ for the values € = O(1) of interest, thus
giving the ion density as

k[P,
= —— — 41
i TZ9 v ’ ( )
where k is
o0
K:/ 26Xp( E)jenv( )dﬁ—l (42)
0 AV \Ilp



Poisson’s equation becomes

vk Y v
£4dz2 TV U 29/TOV,

After changing variables

. v . 7T\I/p /3 Z92
g —gp\ij s 9p = /€22§% , >

Poisson’s equation becomes

d?g 1 s v [T

duz \/g \/% ) /’LS K G\I’p ) ( )
where the dz ~ 23 du has been applied. If pg/\/gp is
much smaller than 1/,/g, we can assume g ~ go + g1,

where g1 < go is the correction due to small us/,/gp.
Then we have

—— N — = (46)

After integrating the resultant equations g = 1/,/go and

gl =—q1/ 2g3/ - s/ \/Gp, We find the behavior at inward
tip of the second transitional layer for increasing wu,

aNAB
g = su _ s u? . (47)
2 20,/7,

As g becomes large along with u, moving into the sheath,
ts//Gp becomes comparable to 1/,/g, and the two-term
expansion in Eq. (47) provides the matching condition
for the sheath.

D. Sheath

Inside the sheath, z-lines lie far to the right, leading to
jz:l(o) < jz(f) ~ jZ(O) and J:(e) = Jeno(€) ~ Jz=1(0),
the ion density then reading

k[,

niz) = =2 (48)
where x is given by Eq. (42). Although this approxi-
mation fails near the probe, as with the approximation
Eq. (24), the high bias assumption makes space-charge
effects negligible within some neighborhood of the probe.
Moreover, in the case of sufficient electron emission, the
ion space charge is small compared to that of the emitted
electrons and thus the error of this approximation can be
further neglected. The plasma electron density can be ig-
nored inside the sheath, and the emitted electron density
used is the fluid approximation of Eq. (24). We impose
a bound ney, = 1 if ng,, > 1. Poisson’s equation now
becomes

A (4, v s
262 \dz"dz) w2V U

2\/m0 (U, — ) (49)

Using same changes of variables as Eq. (44) yields Pois-
son’s equation as

g (ks
o (o) o

To match with the behavior of the potential at the inward
tip of the second transitional layer given by Eq. (47), for
small v > 0 we have

_ (3" O
7=\ 2 20/3,

where the curvature effect, represented by the factor e™
in Eq. (50), is ignored.

Equation (50) must be integrated from small u, with
the behavior of Eq. (51), till reaching the probe at z = 1,
i.e., up = In zo. Integration depends on the unknown pa-
rameter {p. For given v, A, and W, the corresponding
Epm(1,0,9,) = Rpyaz/Ap is determined by trial itera-
tion, till condition g(u,) = g, is satisfied,

2/3
ﬂ’; ) . (52)
2268H

= (120)'3 — psu

10/,
(51)

u
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For decreasing values of Uy, the derivative dg/du at the
probe keeps positive until the SCL condition dg/du =0
is reached. The probe potential here, Vgop, (v, 0), is the
minimum of ¥, values that allow monotonic potential
profile.

V. RESULTS AND DISCUSSION

Let us discuss the results with some typical data in
space, kT = 0.1eV and a somewhat low day density
Noo = 3 x 1011 /m?. Results are shown for a tentative
tether temperature ¢ = 4 (7, ~ 290.1K) and several
emitted electron densities, v = 20, 50, 70 and 100, corre-
sponding to work function W = 0.708, 0.685, 0.677 and
0.668eV respectively.

For different v values and a range of ¥,, values, Figure 6
shows Rinax/Ap and dg/ du|,—1, Figure 7 shows ¥q, ¥y,
U, /22, and ¥, /23, and Figure 8 shows the parameters
B, K, gp, and ps. The results for the case of no emission
(v = 0) are also shown in the figures. Except for the v =
0 case, the curves end at the probe potential ¥gc (v, 0),
where SCL condition is met. The values of Ry,q./AD
in Fig. 6 are slightly different from the value also given
in Ref. 14 because of our use of Eq. (38) for z9, instead
of a further approximation W,/z} = (1 + 28&)¥,/z3
as in Eq. (A6) of Ref. 14. Figure 9 shows W /¥, versus
1/2? profiles for v = 100, and ¥, = 5000, 1000 and
300. Because the second transitional layer is not actually
solved (only the solution behavior being found at both
layer ends), this layer is not shown in this figure.
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FIG. 6. The maximum radius and the derivative at the probe
for 0 = 4 and several v, and for a range of ¥,. Except for the
case v = 0, curves end at the probe potential where the SCL
condition is met, being Vgcp = 26.2, 89.7, 143.0 and 238.8
for v = 20, 50, 70, and 100 respectively.

A. Effects of emitted electrons

For a given U, the space charge effect from emitted
electrons increases with emission level v due to more
emission from the probe. For a given v, the effect in-
creases with decreasing W,. This is because electric field
inside the sheath accelerates the electrons less if ¥, de-
creases, which thus results in more space charge every-
where. The influence of v and ¥, on space charge effect
is indicated by the parameter ps in Eq. (50), shown in
Fig. 8d.

As shown by Fig. 6a, thermionic emission clearly in-
creases the range of radius R for OML validity. At very
high probe bias, after emitted electrons have been ac-
celerated by the strong electric field, their space charge
results in negligible effect throughout the sheath. There-
fore, Rpjae is close to its value for no emission and
dg/ dul,—; changes like an ion sheath without emission.
Decrease of ¥, or increase of v in Eq. (50) enlarges ps as
shown in Figs. 8d, increasing electron space charge effect
inside the sheath. For a given level v, with ¥, decreas-
ing, excess of electron space charge reduces the electric
field in front of the probe, which decreases sharply when
approaching the SCL condition, as shown in Fig. 6b. The
more intense the emission is, the higher ¥gcr (v, 0) is.

We note that for higher emission level v, more nu-
merical difficulties for locating the exact SCL condition,
dg/dul,—1 = 0, are encountered. This is probably due

TABLE I. Comparison of probe potential when the SCL con-
dition is met, whether considering (Uscr) or not (Vscin)
the emitted electron density outside the sheath.

v =20 v =150 v="70 v = 100
VYscr 26.2 89.7 143.0 238.8
Uscrn 10.1 46.4 81.4 147.9

to increased space charge effect near SCL condition, as
compared to lower emission level. Therefore, for higher
emission level v, a small change in ¥, renders a greater
change in dg/du|,—;. We can still determine however
the SCL probe potential to five significant figures.

Figure 9 shows the smooth matching among profile lay-
ers. However, we can see that the gap between sheath and
first transitional layer increases as ¥,, decreases, which is
also shown as the difference between z; and zo in Figs.7c
and 7d. Given by Eq. (38), the thickness of these two
transitional layers increases with 8 (Fig. 8a), which weak-
ened the validity of the expansions implied in the deriva-
tions.

Although the emitted electron density will be negligi-
ble far away in the quasineutral region, its effect can not
be generally neglected throughout z > z9. To discuss
the effects of emitted electrons, we construct the solu-
tion which ignores their space charge outside the sheath,
thus keeping a given v value in the sheath attached to
the probe, but setting ¥ = 0 in Egs. (28), (33) and (A2)
for 29, z1, Yo, Uy and p, and also s in Eq. (51) for the
matching between second transitional layer and sheath.
As expected from reduced electron space charge, the SCL
condition is met at some lower potential (Table I), show-
ing significant difference.

If emitted electrons are considered negligible outside
the sheath, the values of zg, z1, Yo and ¥; will be the
same as the case of no emission from the probe (v = 0).
This is because, under condition R = R4, they do not
need information from the sheath. We compare the re-
sults of Uy, ¥y and U, /27 for each v to that of v = 0,
Figs. 7a - 7Tc. For very high potential, changes of v or ¥,
cause negligible effects on the results. The error due to
the no-emitted-electron-outside approximation increases
with ¥, decreasing or v increasing. For the range of
parameters we have considered, because Vgor, (v = 20)
is much lower than that for other v values, a maximum
error, around 50% decrease in the values, is found at
v = 20 when the SCL condition is met. Thus the emit-
ted electron density can not always be ignored at zq
and zp, leaving alone further closer to the probe. Con-
sequently, a maximum 50% decrease in &p,, with no-
electron-outside approximation is also found at for v = 20
and Ygeor (v = 20). Evaluating the emitted electron den-
sity at zo, ¥ X Nem(20), shows a maximum density around
0.15 for v = 20 and Vg (v = 20), being not negligible.
In the case of a tether cathodic segment, considering uni-
form temperature and work function, although the emit-
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FIG. 8. B, k, gp and pus versus ¥,, for § = 4 and several v values.

ted electron density can be safely ignored far below point B. Current
B* in Fig. 1, it can not near B*.

To evaluate the effectiveness of thermionic emission,
it is important to compare the RDS thermionic current,
Eq. (4), with the respective OML collection current at
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FIG. 9. Potential profiles for = 4, v = 100, and three values
of bias W,

equal bias |U,|, Eq. (3), the ratio being

Me Iemp

m; Liomr

Temp T
e = U 5 53
leomr, 0|, (53)

with v and ¥, typically large. The ratio Iemp/Liomr is
much larger than the ratio ey, /Ic.on 1, shown in Fig. 10,
with a factor of \/m;/m. =~ 171 for oxygen ions. This
large ratio clearly shows that thermionic emission is far
more efficient than ion OML collection in tether cathodic
current exchange. The ratio Iepmyp /I.onm 1, compares the
thermionic emission at the cathodic segment to the elec-
tron OML collection at the anodic segment for equal bias
|U,|. Figure 10 shows that the ratio is of order unity,
which suggests that there will be no large disparity in
the lengths of the cathodic and anodic segment, making
current emission/collection similarly effective in tether
applications.

However, although higher emission would undoubtedly
emit more current in the no-valley case, the SCL con-
dition is met at higher probe potential (Fig. 6). Thus
point B* is moved more towards the cathodic end, leav-
ing longer segment where current is I, < Iemp. As a
result, whether more RDS emission (say lower work func-
tion or higher temperature) would always increase the
cathodic contact efficiency still needs to be discussed in
the analysis of the valley case. The parametric design of
a bare-tether system is ambient dependent, with effects
of tether temperature due to heating under operation,
plasma density, and temperature. The analysis for the
valley case will be important to choose the proper length
of the coated cathodic segment for each mission.
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Appendix A: Transitional layer at z;

Due to the sharp potential increase, the j-line moves
to the right from z; to z2, being nearly parallel as shown
in Fig. 5, giving jZ(€) & jeny(€) for the values e = O(1)
of interest. Thus the ion density will be as in Eq. (31).
We can expand the RHS of Poisson’s equation about z;
and ¥, to order z; — z and (¥ — W)2, which represents
the divergent behavior of quasineutral potential at zi,

U — Uy /21 — 2, leading!

420 21— 2 (U — )2
- A Al
&2, dz? H 21 + 2 ’ (A1)
where the parameters p and A are given by
" exp (—e
o (-0
Jo ™
9
-7en17(€) \IIT’
X (24 = — — — de
l \/Jﬁ1 (€) = JZnu(e) \/:/51( ) = (e+ )
v
_— A2
Z1 7T9\I/ ( )
\ / (=) {2j 372, (6) = 22, (€)
env . 3/2
e+ 7 [32,(6) = 2.0 (0)]
3j —2(¥
Y A G p>3/2} "
FACK (6 +7,)]
—exp(—¥y) . (A3)
After defining
ZI_Z_5§:< 2 1 )2/55
21 N A €272 ’
2
U0, = %BY : (A4)
Poisson’s equation becomes the first Painleve
transcendent?” with initial condition that matches



smoothly the quasineutrality solution from z; outwards,

d?y 2 .
— =Y"+€, ghm -Y=v-€.
——00

e (A5)

For the expansion to be valid in this thin layer, it is
required 3 to be small, which is validated as in Fig. 8a.
Integration shows Y diverging as =~ 6/(£ — &)? at &€ —
€ ~ 3.42, giving 2y as'l14

zZ9 = 21 (1 — 652) s 52 ~ 3.42 . (A6)

This layer is shown in Fig. 2 as the curve passing through
the circle markers. It matches well with the solution
between 2y and z1, and then tends to infinity as a pole at
2. As Wy diverges at zo, is actually left undetermined;
neither zo nor ¥, are marked in the figures.
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